Factoring Polynomials

- 1. If the polynomial has a greatest common factor <u>GCF</u> other than 1, factor out the greatest common factor. **Examples**: $3x^3 + 9x^2 - 12x = 3x(x^2 + 3x - 4) = 3x(x+4)(x-1)$ and $12a^2b^2 - 3ab = 3ab(4ab-1)$
- 2. If the polynomial is a <u>binomial</u> (two terms), then see if it is the **difference of two squares**.
 - $(a^{2} b^{2}) = (a b)(a + b)$. **Example**: $4x^{2} 9 = (2x-3)(2x+3)$. The <u>sum</u> of squares, $a^{2} + b^{2}$, <u>won't</u> factor.
- 3

5.	
a. If the polynomial is a	b. If it is not a perfect square trinomial, use the <u>ac</u> method to factor $\underline{a}x^2 + bx + \underline{c}$
<u>trinomial</u> , then check	by <u>grouping</u> .
to see if it is a <i>perfect</i>	 Look at the product <u>ac.</u> Think of a pair of numbers m,n whose product is ac
<i>square</i> trinomial	and whose sum is b . (A list of possible number pairs may help.)
which will factor into	* If a =1, the solution is $(x \pm m)(x \pm n)$. Example : $x^2 - 9x+20 = (x-4)(x-5)$.
the square of a	* If a ≠ 1, rewrite the polynomial so the middle term (bx) is mx + nx .
binomial. Examples:	• Example: $5x^2 - 22x - 15$. ac = 75. Since $3*25 = -75$ and $3 - 25 = -22$, bx
$9x^{2} + 12x + 4 = (3x + 2)^{2}$	becomes $3x-25x$. The expression becomes $5x^2 + 3x - 25x - 15$. Factor this
$9x^2 - 12x + 4 = (3x - 2)^2$	by grouping as in the next section.

- 4. <u>Other polynomials</u>: If it has more than three terms, try to factor it by grouping.
 - a. Group two terms together which can be factored further
 - **b.** Use the distributive property in reverse to factor out common terms.
 - **c.** Write the factors as the multiplication, or product, of binomials. **Example** continued from above: $5x^2 + 3x - 25x - 15 = x(5x+3) - 5(5x+3) = (x-5)(5x+3)$
- 5. <u>Checks</u>: Can <u>any</u> of the factors be factored further? Does multiplying the factors give the original expression?